International Transportation Energy Modeling (ITEM)

Sonia Yeh
Chalmers University of Technology, Sweden
University of California, Davis, USA
Lew Fulton
University of California, Davis, USA
International Transportation Energy Modeling (iITEM)

Organized by

Contributors

Participants

iTEM2 Gothenburg, Oct 25-26, 2016
Activities (academic)

- **Comparison of projections**, as collected in a shared database,

- Discussion of **methodological approaches** of existing models,

- Analysis of the **fundamental drivers, new technologies**, and projected impacts of proposed and existing **policies**, and

- Exploration of **novel methods** in the transport energy area.
Activities (relevance to policies and decisionmaking)

- Impartial analysis and benchmarking of strategies
- Compare modeling results with planned policy targets to gain insights
 - Identify possible policy gaps
 - Feasibility of modeling results
- Insights to policymakers and decisionmakers about future trends of development in the baseline and policy scenarios
 - For future policy development
 - For strategic planning and investment decisions
- Shed lights on major sources of uncertainties and how they affects the outcome of the projections
Largest source of uncertainty in transport projections

- Vehicle ownership (demographic)
- Travel - Infrastructure constraints
 - Travel - Urban vs rural
 - Travel - Spatial patterns
- Cost and investment assumptions
- Travel per vehicle
- Heavy-duty focused topics
- Off-road
- Vehicle efficiencies
- Loads (especially in freight)

![Graph showing uncertainty sources]

- Policy shifts affecting behaviors
- Urban vs rural
- Supply constraints (resources)
- Behavioral/structural shifts
- Freight activities/technology shift
- Demographic classes
- Modal shift analysis

![Graph showing model improvements]

- Alignment on input assumptions
- Coordination on historical data
- Policy shifts affecting behaviors
- Indicator (ratio to GDP, pop, etc)
- Modeling approaches
- Effects of policy
Transportation in a Low-Carbon Economy

- Transportation emissions mitigation in the models is far more constrained than the remainder of the energy economy.
3 Billion Cars (or 1.5 billion) in 2050?
Large uncertainties in the projections of LDV stocks
Transportation in a Low-Carbon Economy

- Primary means of reducing transportation-related emissions in the models
 - Reduced activity levels (e.g., less passenger transport, fewer freight shipments)
 - Modal shifting, towards modes with lower emissions intensity
 - Vehicle drivetrain/fuel choice (e.g., electric vehicles vs. ICE)
 - Vehicle efficiency level (e.g., light-weighting, downsizing)
 - Reduced upstream fuel carbon intensity (e.g., CCS, biofuels)

- In the energy-economy models, all of these contribute to emissions mitigation to varying degrees
ITEM1: Models’ structures drive the choice of mitigation options

- Energy-economic models (GCAM and MESSAGE):
 - low carbon fuels
 - efficiency

- Scenario (expert)-based models (MoMo and Roadmap):
 - efficiency
 - modal shifts
Energy use in the policy case only decrease slightly (~10%) but major shifts in fuel types.. (and technology, activity)
Freight: Better understanding of shifts in activity and mitigation options of in technology, fuel, and system integration are needed
Current policy Evs/PHEVs commitments to 2020/2025 may be far below what’s needed to achieve 2° target suggested by the models

Table 2. Comparison of announced policy targets with model-projected number of electric vehicles needed to be on the road by 2020/2025 in order for the transportation sector to be consistent with the 2 °C target. Average values across models are shown; full ranges in parentheses.

<table>
<thead>
<tr>
<th>Policy/Target</th>
<th>China</th>
<th>U.S.</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2–47)</td>
<td>(9–42)</td>
<td>(35–180)</td>
</tr>
<tr>
<td>iTEM</td>
<td>28 million</td>
<td>29 million</td>
<td>113 million</td>
</tr>
<tr>
<td>Policy/Target</td>
<td>5 million by 2020*</td>
<td>1 million EVs by 2015†</td>
<td>20 million by 2020, 100 3.3 million by 2025**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Indus. Dev. Strat. Plan (Tan et al. 2014);
† President’s pledge https://www.whitehouse.gov/sites/default/files/other/fact-sheet-one-million-advanced-technology-vehicles.pdf;
** MOU, 8 states http://www.arb.ca.gov/newsrel/newsrelease.php?id=620;
Future activities

- Publication

- Develop a new data contributing/sharing platform, focusing on the issues of data quality, coverage, and integration.

- Develop an agreed data sharing policy

- Target specific research/policy topic

- iTEM3, Paris 2017